Content-Based Image Retrieval Using Multiresolution Analysis Of Shape-Based Classified Images

نویسندگان

  • I. M. El-Henawy
  • Kareem Ahmed
چکیده

Content-Based Image Retrieval (CBIR) systems have been widely used for a wide range of applications such as Art collections, Crime prevention and Intellectual property. In this paper, a novel CBIR system, which utilizes visual contents (color, texture and shape) of an image to retrieve images, is proposed. The proposed system builds three feature vectors and stores them into MySQL database. The first feature vector uses descriptive statistics to describe the distribution of data in each channel of RGB channels of the image. The second feature vector describes the texture using eigenvalues of the 39 sub-bands that are generated after applying four levels 2D DWT in each channel (red, green and blue channels) of the image. These wavelets sub-bands perfectly describes the horizontal, vertical and diagonal edges that exist in the multi-resolution analysis of the image. The third feature vector describes the basic shapes that exist in the skeletonization version of the black and white representation of the image. Experimental results on a private MYSQL database that consists of 10000 images; using color, texture, shape and stored relevance feedbacks; showed 96.4% average correct retrieval rate in an efficient recovery time. Indexing terms/

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

Content Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram

Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a  database. In medical applications, CBIR is a tool used by physicians to compare the previous and current  medical images associated with patients pathological conditions. As the volume of pictorial information  stored in medical image databases is in progress, efficient image indexing and retri...

متن کامل

تأملاتی بر نمایه‌ سازی تصاویر: یک تصویر ارزشی برابر با هزار واژه

Purpose: This paper presents various  image indexing techniques and discusses their advantages and limitations.             Methodology: conducting a review of the literature review, it identifies three main image indexing techniques, namely concept-based image indexing, content-based image indexing and folksonomy. It then describes each technique. Findings: Concept-based image indexing is te...

متن کامل

Novel Multiresolution Metrics for Content-Based Image Retrieval

This paper proposes three new ideas and one revision about image metrics and their applications. Of most importance is the multiresolution ‘shape metric’, which measures distances according to images’ content shape information. Accompanied with it is a feature/non-feature image characterization philosophy. The second effort is the modification of an existing ‘color metric’, whose distance compu...

متن کامل

Content Based Image Retrieval with Multiresolution Salient Points

This paper presents a robust technique for Content Based Image Retrieval (CBIR) using salient points of an image. The salient points are extracted from different levels of the unsegmented image. Local contrast information at different resolution is embedded along with shape information. Fuzzy compactness vector is computed from the signature obtained at different thresholds. The resemblance of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1610.02509  شماره 

صفحات  -

تاریخ انتشار 2014